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1, Tntroduction

Let £ %Ye a smooth elliptic operator whose coefficients are
defined on D X [0,T], where D ¢ E° (Buclidean n-space).

We consider the problem of the optimal control of systems
with the formal representation

W, = W + bu + ? ok (*)

satisfying W(x,t) -0 as x-> d, t 2z 0, and with control

i}

u(x,t) ] k(v,x,t)W(v,t)dv

and cost criterion

T
Cuﬁv,t) = E$ { Jw(x,s)W(y,s)s(x,y,s)dxdyds

+

T
E: f fP(x,s)uz(x,s)dxds,
b

t

where E. is the formal derivative of the Wiener process zi(t)
and ﬂ; is the expectation given the control wu, and initial con-
dition ¢(*). A precise meaning is given to all terms in the
sequel. An equation of the form (¥) seems like a useful model of
a variety of noise disturbed objects. but it also arises in the
following way. Suppose that an object is governed by Ht = £H + bu

and the noise corrupted observations having the It0 differential



(for each x e D) dyi(x,t) = dtfmi(v,x,t)H(v,t)dv + dw,  are
taken, where the w, are Wiener processes, Then, the conditional
expection* W(x,t) = E(H(x,t)]y(v,s), s =t, v e D} has a
representation in the form (*). 1In fact, (26) is the relevant
'Riccati' equation (ﬁith a reversed time parameter). The results
herein concern the first boundary value problem for a single
parabolic equation. However, it is élear that the method is
applicable (and results easily extendible to) the second boundary
value problem, or to a family of parabolic equations, The latter
model is quite versatile. For example, we can use a vector para-
meter process W(x,t) generated by (¥) as the input to another
system (e.g., (3/3t-£)Y = W + b'u'). We can thus generate the
'distributed system' analogs of the 'linear Gauss-Markov' processes,
and treat the corresponding average quadratic cost control problem.
The results are based on the results of [1] which provide
criterion which guarantee that there is a version of a vector

parameter process which with probability are (w.p.l.) is continuous

latter results, eq. (1) would lose its intuitive meaning (as would
stochastic differential equations if the paths were not known toA
be continuous w.p.l.). Previous works concerned with 'random'
partial differential equations [2], [3], were concerned with the .

nature of the random solution corresponding to a random, but

fThe filtering problem will be treated in a subsequent work. This

paper is devoted strictly to the control problem.



smooth, boundary condition. Once the necessary smoothness properties
of the process W(x,t) are established, much of the analysis is
similar to the analysis of the corresponding deterministic problem.
However, to our knowledge the few treatments of the deterministic
problem (e.g.; see tﬁe interesting reference [4]) are essentially
formal in nature. Most of the proofs are slightly abbreviated. We
have chosen to omit the details of several arguments dealing mainly
with the smoothness properties of potentials and related integrals.
The arguments are tedious and standard. Some are based on existence
theorems (Lemma 2.3) and most others use the arguments of [5],

Chapter 1, Section 3-5.

In Section 2, some needed results on processes with a vector
parameter set are given. The proofs of the statements of Lemma 2.1
are found in [1l]. The proofs of the statements of Lemma 2.2 and
its corollary follow from Lemma 2.1 and the properties of stochastic
integrals depending on a scalar time parameter. Theorems 3.1 and
‘3.2 define the solution of (¥) and its basic properties; continuity
w.p.l, existencé of HOlder continuous w.p.l. second derivatives
(with respect to the Xi)’ ete. The optimality and 'approximation
in policy space' results appear in Section 4., Although we deal with a
single 'white noise' input, the results are obviously valid for the
no more general, *infinite dimensional’' white noise input of the

Corollary to Lemma 2.2.




2. Mathematical Preliminaries

Definition. Following the usual usage, a version of the
vector parameter scalar valued process f(y) is any scalar valued

process f(y) such that P{f(y) = f(y)} = 1 for all vector para-

. . . n
meter values y. The parameter y varies over a domain R in E

Lemma 2,1, Let R be the clogure of a bounded open domain

with generic point y = (yl,...,yn), and let the boundary of R

have the property that any line intersects it only finitely often.

Let f(-) be a stochastically continuous process with parameter

set R. Suppose that for each nonempty section

Ri(bl""’bi—l’bi+l’""bn) =Rn {y: v = bj’ j £ 1}, there is a

. +
null o set Ni(bl’""bi-l’bi+l""’bn) s0 that some version of
f(bl""’bi—l’"bi+l""’bn) is continuous on Ri(bl""’bi-l’
bi+l""’bn) for o ¢ Ni(bl’""bi—l’bi+l"°"bn)' Then ([1 ]

Theorem 1) there is a version of f(y) which is continuous on R

-

w 1
WeD.do

Let the mean square derivatives of f(y), with respect to

Yysee sV have continuous versions on R w.p.l. and let there be

a continuous version of f(y) on R w.p.l. Then there is a

version of f(y) which, w.p.l., is continuous and has continuous

ordinary derivatives with respect to yl,...,yr, on R (denoted

1.

T ( b b .,bn) is f(+) restricted to

i-1? i1t
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by (Dif(-)), i=1,...,7) ([]], Theorem k4).

Under the condition (|3| is the Euclidean norm)

1+ (**)

E|£(3+8)-1(y)|% = | 8]

for some o >0, p >0, there is a HBlder*continuous (with HSlder

exponent ofp) version of f£(+) on R w.p.l. ([1], Theorem 2).

=

Note that the above implies that if f(y) and the mean square

derivativeswith respect to Yiser s, satisfy (%), then a version

—

of f£(-) has continuous derivatives with respect to SATRERPS
w.p. 1.

An immediate consequence of Lemma 2.1 is

Lemma 2,2. ILet x €D and s,t e [0,T]. Suppose

R=D X [0,T] satisfies the conditions on R in Lemma 2.1. Let

Zg be a Wiener process and suppose the function a(x,t,s) satisfies

T
Ja(x,t,8)ds < w
o

for each x € D and t e [0,T] and

TBy HSlder continuity (with exponent y > 0) we mean that

| £(y+3)-£(y)| = K@D)|6IY where K(w) < o w.p.l. and 7 s not de-
pend on y. In works on partial differential equations, where we

let y = (x,t), Holder continuity is meant to imply [f(x,t)-T(y,s)| <
K(w)(lx—yly;lt-s]Y/Q). Since we are not concerned with the specific
value of 1y, either form is suitable in this paper.




b 2
[ [a(x,t+4,8)-0(x,t,s)] ds
o

b 2
J [a(X+5,t,S)-O£(X,t,S)] ds
o

A

e(n)

(***)

A

e(l8])

where €(A) -0 as A - 0. Then ¥ the random function

ot
v(x,t) = [ a(x,t,s)dzs
o

has a HS8lder continuous version on R w.p.l., for some HOlder ex-

ponent y > 0. If, further, the Dia(x,t,s) = aa(x,t,s)/Gxi

satisfy the conditions on «(x,t,s) above, then the random func-

tions

t
(Di\lr'(x;t)) Ef Dia(x,t,s)dzs
0

can be identified with the mean square derivative of ¥(x,t) with

respect to Xss and there is a version of Y(x,t) which is con-

tinuous and has HSlder continuous (some non-random exponent Y >.O)

tThe details can be deduced from Lemma 2.1. The reader is referred
to [ 1], Example 2, for the details of a similar result. (¥*%) im-
A t
plies (xx) of Lemma 2.1 since E(J a(x+6,t+£¥s)dzs—f a(x,t,s)dzs}
o] o
t
2 . .
= (2m-1)--5.3.1 [[ (a(x+8d,t+A,8)-a(x,t,s)) ds]m which is

146 (g 1By ©
o(fal 7+ 8] ) for some B >0 and a sufficiently large m.



derivatives (with respect to Xi) on R w.p.l. If the second

derivatives (with respect to the xi) of a(x,t,s) satisfy the con-

ditions on afx,t,s), then the conclusions hold for the second

derivatives of V¥(x,t) with respect to the X,

Corollary. Let Zis’ i=1,..., be a sequence of independent

Wiener processes on [0,T] and let the family ai(x,t,s) satisfy

T T
S ? af(x,t,s)ds <o ? [ai(x+8,t,s)—a(x,t,s)]eds < (] 9])
o 0
t 2
J 2 [, (x,t+4, 8) -0, (x,t,5)]7ds = €(A),
o1 i i

where €(A) -0 as A - 0. Then w.p.l. there is a Holder con-

tinuous version of

v(x,t) = ? £ ai(x,t,s)dzis.

emma, 2.2 have their obvious

=t

anglogs here.

Define D, as the differential operator Q/axi and let
U, = /ot  and

£ = izj aij(x’t)DiDj + % d; (x,£)D; + c(x,t).
2

- et us collect the following assumptions here., Note that Holder



continuity on the compact set R is equivalent to uﬂiform Holder

continuity on R.

(E-1) Let R =D X [0,T], where D is a bounded and open Borel

i

measurable domain. To each point on BD, let there exist a
neighborhood V and a function on h(:) so that D N V has the
representation Xs :_h(xi""’xi—l’xi+l"'°’xn) for some component

X;, where h(x) has HOlder continuous second partial derivatives',

(E-2) On ﬁ; the coefficients of £ are bounded and HOlder con-

tinuous.
(E-3) There exists a real mumber K > 0 so that
L2
i

2 aij(x,t)gigj z2 K ntS

3

1,5 - | i
for any vector‘ E.
(E-h) Let o(x,t),Dic(x,t),Dich(x,t) be H8lder continuous in R.
(E-5) Let o(x,t) and Zo(x,t) tend to zero as x> 9dD in R

(E-6) Let b(x,t) be HOlder continuous on R and k(y,x,t) be
bounded, measurable and Holder continuous in x,t on ﬁ, uniformly
in y.

(E-7) Let aij(x,t) have HOlder continuous second derivatives in

R, and di(x,t) Holder continuous first derivatives in R.

_ T (E-1) implies the condition on R of Lemma 2.1.



It will be helpful to collect the following results here,

They will be used without reference in the sequel.

Lemma 2.3A ([ 5], Theorem 7, Chapter 3). Suppose (E-1)-

(E-3). Let (x,0) have HOlder continuous second derivatives in

D end satisfy o¢(x,0) >0 and #£(x,0) >0 as x - . Let

p(d,t) = 0. Suppose that f(x,t) is HElder continuous in R a

tends to zero as x — dD. Then there is a continuous unique solu-

tion to Ut = £U+ f on R which satisfies the boundary condition

Pp(x,t). Ut(x,t),DiU(x,t) and DiDjU(x,t) are HS8lder continuous

on R and £U(x,t) -0 as x - 3D, t z O.

Defiine the Banach space 52 of functions on R which

satisfy f(x,t) -0 as x —» dD and with the norm

Il = suwo_ [£(x,8)] + sup | £(x,6)-F(y,8)| .

— — 2
x,teR x,teR Ix-y]a+|t-s|a/
¥,seR
Let E;a be the sub (Banach) space of _(5; of functions which

satisfy £f(x,t) -0 as x — dD, and have the norm

el 5, = el + £ Wogell, + 2 Ip,p.el .
1 1,3

Then, with homogeneous boundary conditions, the equation

Uy

E;a- (Follows from [5 ], Chapter 3, egqn. 2.21, and the first

. . -0
iw U= f represents a continuous linear map of Ca into
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part of the Lemma.) .

Lemma 2.3B ([5], Theorem 16, Chapter 3). Suppose (B-1)-

.(E-B)- Then there is a Greens function G(x,x';t,t') for U, =

£U0. G(x,x';t,%8') >0, as x->®d for t>t'. D,G(x,x';t,t'),

DiDjG(x,x’;t,t') and Gt(x,x';t,t') are continuous in (x,t) on

D x (t',T}. If o(x,t) is continuous in x for each t, then

alx,t,t') = [G(x,x";t,t" )o(x",tt )dx' satisfies (J/db-£)a(x,t,t') =

o(x,t) on DN (t',T] and tends to zero as x -»d for t > t'.

If o(x,t), and f£o(x,t) tend to zero as x —» ® and are Holder

continuous on R, then a(x,t,t') satisfies the same conditions for

w

(x,t) €D n [t',T]. If o(x,t) is bounded and measurable, then
t

J dtta(x,t,t') tends to zero as x —» D and is continuous on R.
° =2

(The last statement follows from the arguments concerning potentials

in [5], Chapter 1, Sections 3-5.)

Lemma 2.3C ([5], Theorem 17, Chapter 3). Suppose (E-1)-

(E-3) and (E-T7). Then the Greens function for the adjoint operator

3t + £ is

G*(x,x';t,t') = G(x',x;t',t).

Note that G (x,x'}t,t') is defined for t < t' and that

(/ 3t+£™)E* (x,x";t,4') = 0 on D x [0,t!).



3. The Stochastic Partial Differential Equatién

Theorem 3.1, Suppose (E-1)-(E-5). Let o@(x) have Holder

continuous second derivatives on R and tend to zero as x — oD.

Let #p(x) -0 as x -» . Then there is a process W(x,t) with

parameter set R satisfying (z'denotes z(t'))

W(x,t) = [G(x,x';t,0)p(x' )dx!
t (1)

+ [ dz' {[G(x,x";t,t" )o(x',t! )dx' ).
o

There is a version of W(x,t) which is continuous on R w.p.l. and

——— e —

satisfies W(x,0) = @(x), W(d,t) = O. DiW(x,t) and DiDjW(x,t)

are also Holder continuous on R w.p.l. and #W(x,t) -0 as x -xD.

Also, w.p.l.

W(x,t) = [G(x,x";t,s)W(x?,s)dx?
. (2)
+ [ dz' [a(x,x';t,t" Yo(x', b1 )dx'.
s

For each fixed x in 5, W(x,t) has the It0 differential

dW = £W(x,t)dt + o(x,t)dz. (3)

Remark. W(x,t) is not (w.p.l.) differentiable in t. The
smoothness of o(x,t) determines the smoothness of W(x,t). Lemma 2.2

plays a crucial role here. It is not a priori obvious that the last
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term in (1) has a version which is sufficiently smooth w.p.l. Lemmas
2.1, 2.2 turn the estimates of the stochastic continuity of (1) and
the stochastic continuity of its first two mean square derivatives
(with respect to the Xi) into a statement concerning the existence
of a version for each x,t, so that the actual sample functions are
smooth. The order of integration in the stochastic integral in (1)
must be preserved, Also, the theorem implies that the W term in
(3) has a version which is continuous w.p.l. on R.

It can be shown that the process W(:,t). with parameter t,

is a continuous Markov process with values in a Banach space of func-
tions which satisfy the appropriate boundary conditions (W(x,t) - O

and £W(x,t) -0 as x — dD) and have HSlder continuous second

derivatives (for some fixed non-random H8lder exponent).

Proof, The proof is a consequence of Lemmas 2.2 and 2.3. Let
B(x,t) be the first term on the right of (1). Then (Lemma2.3)
P = Bt; B(x,t) satisfies the boundary conditions and #£B(x,t) =0
as x > ®» for t 20. B(x,t) and #£B(x,t) tend to o¢(x) and

#p(x), resp. as t—> 0. Write
alx,t,t') = [G(x,x';t,t" )o(x",t" )ax'.
Then for +t z &'(t' fixed) a(x,t,t'), D.a(x,t,t') and DiDja(x,t,t'),

are Holder continuous on R and each satisfies the conditions on

a(x,t,t') of Lemma 2.2. Hence, by Lemma 2.2, there is a version of
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t
V(x,t) = [ dz'a(x,t,tt)
o ,

which is Holder continuous w.p.l. on ﬁ; and which has Holder con-
‘tinuous second derivatives with respect to the x5 w.p.l. on R.
Diw(x,t) and DiDjw(x,t) can be identified with the Holder con-

tinuous versions (which exist w.p.l. in R) of

t t
Diw(x,t) = [ dz'D.afx,t,t") = [ dz'fDiG(x,x';t,t')U(x',t')dx’
O (o]
t %
DiDjW(X,t) = £ dz'DiDja(x,t,t') = £ dz'fDiDjG(x,x';t,t')G(x’,t')dx',

resp. Thus #£Y(x,t) has a version which is Holder continuous w.p.1l.,
. .
and which is clearly a Holder continuous version of [ dz'fa(x,t,t').
o

Using the continuity of #£y(x,t) and the fact that #£y(x,t) -0 in
probability (since Za(x,t,t')»0) as x — 3D, we have £y(x,t) -0
as x - OD. Thus (1) éatisfies the required boundary conditions.
Equation (3) follows from the definition of the Tto differential of

t
(1) for each fixed x, and the observation that df dz'a(x,t,t') =

(@]

t
dza(x,t,t) + dtf dz'a%(x,t,t') where a(x,t,t) = o(x,t) and
o

Q%(x:t:t') = La(x,t,t').
Equation (2) is obviously true w.p.l. for each fixed x,t,s.
To show that it is true w.p.l. on D X [0,T] x [0,T], note first that
t

v(x,t,s) = [ dz'{fG(x,x';t,g)d(x',ssdx'}
s



1k

can be defined (using previous arguments) to be continuous (as a
function of x,t,s) on D x[0,T] x [0,T], except for o in some

null set N. Define V(x,t) as the (unique) lim y(x,%t,s).
s >0

The limit exists for w ﬁ N, and is a version of the continuous

(for w £ N) function ¥(x,t) defined previously. Then, for

o £ N,
W(X)t) = W(X’S) + ﬂ[(X,‘t,S).
Now writing (1) in the equivalent form

W(x,t) = JG(x,x";t,0)p (x!)dx!
+ [G(x,x';t,8)¥(x",s,0)dx! + ¥(x,t,s)
and using the semigroup property
Ja(x,x';5,0)p(x)axt = [G(x,x";
and the continuity w.p.l. of V¥(x,t,s) gives (2). Q.E.D.
The concern of the paper is restricted to systems with
controls, which are linear in W(x,t) and which appear linearly

in the differential equation. Thus adding a control term to (5)

we have, formally,



1)

aw = £W(x,t)-dt + o(x,t)dz + b(x,t)u(x,t)

(3a)

where the control is

u(x,t) = Wy, t)k(y,x,t)dy W)

Theorem 3.2 gives meaning to (3a).

Theorem 3.2, Suppose (E-6) and all the assumptions of

Theorem 3.1, and let u(x,t) be given by (4). Then there is a

Holder continuous (w.p.l) version of (5)

t
W(x,t) = [G(x,x';4,0)p (x')dx' + [ dz!'[a(x,x';t,t")o(x,t )ax!
o

. (5)

+ [ at? [a(x,x';t,t" )b (x',t" )u(x,t" )dx’
o .

Furthermore (w.p.l.) DiW(X,t) and DiDjW(x,t) are HOlder con-

tinuous on R, and both W(x,t) and £W(x,t) tend to zero as
x - D,

There isakernel B(x,x';t,t), 50 that

t

W(x,t) = [ at'[B(x,x";t,t" )a(x?,t")dx’ (6)
o ,

where q(x,t) is the sum of the first two terms on the right side
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' t =0 =y . =0 =
of (5). B(x,x';t,t') maps 02+oz(R) into C2+oz(R)' W(x,t) has

the Ito differential

aw(x,t) = £W(x,t)dt + o(x,t)dz + b(x,t)[k(y,x, t)W(y,t)dydt (7)

Proof. Let W(x,t) be HOlder continuous on R (exponent

a) and tend to zero as x —» . Let the HSlder exponent in (E-6)

be ¥z a Then
(x',t') = b(x',t )Wy, t' )k(y,x,t" )dy (8)

is HOlder continuous on R (exponent @) and tends to zero as
x! - ®. Thus, (by Lemma 2.3A) the last term in (5) maps
W(x,t) € C, continuously into C2+a' Hence (5) also is a con-
tinuous linear map of EO into ©o

2+ ara

Write (5) as

t
W(x,t) = a(x,t) + [ /M(x,x';t, t)w(x', ¢ )ax (9)
(o]

where
M(x,x';t,t') = [G(x,y;t,8 )b(y, " )k(x',y,t)dy.

The kernel M(x,x';t,t') must also correspond to a continuous

—=0 -0 .
i i 2.3A
linear map of C2+a into C2+oz' By Theorem 3.1, and Lemma 2.3

—0
1See Temma 2,3A for the definition of 02+a.
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a(x,t) is in Eg+a for some o > 0 w.p.l. Then, the theory of
Volterra integral equations asserts the existence of a

W(x,t) € Eg+a satisfying (9) (and, hence, (5)) w.p.l. It also
yields the representation (6)

The assertion concerning the Itg differential follows

exactly as in the proof of Theorem %.1. Q.E.D.



4, The Solution to the Optimum Control Problem

The solution is divided into four Theorems. Theorem 4.1
establishes’some required properties'of a partial differential in-
tegral equation (the analog of the Ricatti equation). Theorem 4.2
establishes a formula for the cost corresponding to a fixed control.
Then, (Theorem 4.3) the usual dynamic programming technique of
quasilinearization (or approximation in policy space) is applied
to obtain a sequence of costs (and improved controls) which
(Theorem 4.4) converges to the minimum cost (and optimal control).

The adjoint of £, operating on functions of x, is written

£,8(x) = T D,D [a(x,8)e(0)] - T D[4, (x,£)(x)]

i,3
+ c(x,t)e(x).
~ -~
Define the Banach space Cg+a of functions on R =
D x D X[0,T] satisfying the condition that £(x,y,t), aﬁzf(x,y,t)
and i;f(x,y,t) -0 as x->d or y—->dD, or t T, and with

90,0, = Mol + 0, A+ Tlo, ol

v T ol TIn, 0 A+ le,
,d i1 T 1,3 TiYd
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where
”f”a = sup AI f(X,y,‘t)l + sup __Lf(X) L&t)~f(x'&y',t' )l
X,¥,teR x,y,teR  |x-x'|"4|y-yr| ]| t-t]
x',y',t'eR

Theorem 4,1, Assume the conditions of Theorem 3.2, and

(B-7). Let Q(x,y,t) be symmetric, Holder continuous on

D x Dx [0,T] and positive definite! for t e [0,T]. Let

Q(x,y,t) 20 as x->d or y->dD. Write

x %
Rt(x,y,t) + (;€X+£y)R(X,y,t)

+ [o(v,t)[kk,v,t)R(v,y,t) + k{y,v,t)R(x,v,t)]dv (10)

= ‘Q(X)-V:t)'

There is a unique symmetric (in x,y) and continuous solution to

A

. . e .. 0
(10) which, in addition, is in 02+a

Proof, By (E—’T), the adjoint operator and its Greens func-
tion are defined. The proof involves some standard calculations,
similar to those of Sections 5-5, Chapter 1, [5 ], and most of the
details are left to the reader. Consider first the adjoint equa-

tion (11), defined in D x D X [0,T]

1LBy positive definiteness, we mean [Q(x,¥y,t)e(x)p(y)dxdy = mf[q)(x)[gdx.

" The condition is not actually needed until Theorem 4. L,
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~ " % ¥ . ' |
Rt(x’y’ t) + (£X+£y)R(x,y,t) = -Q(x,y,t) (11)

with boundary conditions ﬁ(x,y,t) -0 as x> D or y-JD
or t —»T. The unique solution to (ll) can be verified to be the

symmetric function.1’

T
£ dsffdx'dy‘G(x',x;s,t)G(y',y;s,t)Q(x',y',s)

It

R(x,y,t)

. (12)

* %
{ dsffax'dy'G (x,x';t,s)G (v,¥';t,s)Q(x',y',s).

Write (12) as
T *
R(x,y,t) =J [dsdx'G (x,x';t,s)h(y,x';t,s)
RS :
where
*
h(y,x';t,s) = [G (y,y';b,s)Q(x",y",s)dy".
h(y,x';t,s) is uniformly HOlder continuous in y,x',t,s for

sz t, and h(y,x';t,s) >0 as x —»03D or y—9D. Let t =t

and consider

Teonsider the differential equation (*) P = AP + PA' - Q, with
boundary condition P(T) = 0. Let &(t,s) be the fundamental
matrix of % = Ax. Then (¥) has the solution (xx%) P(t) =

T
[ o(t,s)Q(s)o' (t,s)ds. Note the similarity in form between (xx)
t

and (12). (Here ' denotes transpose.)

*
M Recall that G (x,x';5,%') + £.6(x,x';5,8') = 0 for &<t



T
R(X,Y:tlto) = { fdsdx'G*(x,X';t,s)h(y,x’;tO,S)

E(x,y,tlto) is the solution to the adjoint equation U + £X0=n (with

, for each fixed vy,

t = to in h) to which Lemma 2,3A is a,pplicavble..r Thus
~ K
B(x,y,t‘to) and iXR(x,y,t[to) tend to zero as x 5 D or t - T by
virtue of the properties of Q(x,y,t); also ﬁ(x,y,tlto) is symmetric
. . ~ o
in x,y. Since R(x,y,tolto) and iXR(x,y,toltO) tend to zero as
X->d or y —>ED, and to is arbitrary, we conclude that the terms
~ ~ ¥ ¥ro
R(x,y,t|t) = R(x,y,t) and £ R(x,y,t) and iyR(x,y,t) are Holder con-
tinuous and tend to zero as x> d or y-> d or t->T. Now, to
. | ~ ,
complete the proof that R(x,y,t) € Cg+m we need only show that
ﬁt(x,y,t) is Holder continuous. But this is true since ﬁ(x,y,t]to)
has Holder continuous derivatives with respect to t and to in t2 to 2 0
(uniformly in x,y in D X D),
For the rest of the proof, write (10) as the Volterra integral equation
R(X)Y)t) = R(X,Y,t) +
. , (13)
*
[ asffax'ayt G (x,x';t,8)G (v,y';t, s)M(x',¥",s)
t

where M(x',y',s) is the integral term in the middle of (10) (with x',y',s
substituted for x,y,t, resp.). If there is a solution of the desired form
to ((14) is obtained by changing the order of integration in (13))

T
R(x,y,t) = R(x,y,t) + [ ds[[R(v,w,s)K(x,y;Vv,w;t,s)dvdw
t

(1)
T
+ [ asf[R(v,w,s)K(y,x;w,v;t,s)dvaw,
t

1‘The boundary conditions are U(x,t) = 0 on D x {T} + dDx [0,T}. If the
time parameter is reversed (changing the terminal manifold D X {T} to an
initial manifold D X {0}) then, since £* satisfies (El) - (E3), Lemma 2.3%A
is applicable,
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where
*
K(x,y;v,w;t,s) = b(v,s)G (y,w;t,s)fG*(x,x';t,s)k(x',v,s)dx',

then there is a solution of the desired form to (13). It can be

verified that under the imposed conditions, the kernel K represen’cs'r

A

A
a continuocus linear map of 02;a into C

Finally, it can be verified, via the theory of Volterra equa-

i%

tions, that (14) does have a unique solution of the desired form.
Q.E.D.

Let the control u be given by

u(x,s) = fku(V}x5s)W(v;s)dv.

The the cost becomes

where

Qu(x,y3s) = 8(x,y,s) + fku(x,v,s)ku(y,v,s)P(v,s)dv.

Recall that the system that we are concerned with is defined by

Theorem 3.2 and has the Ito differential

¥ e map is given by the sum of the two integrals of (1L4).
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dw(x,t) = £W(x,t)dt + o(x,t)dz + b(x,t)u(x,t)dt,

and boundary condition W(x,t) »0, as x — XD.

Theorem 4,2, Assume the conditions of Theorem L.1. Let

W(x,t) satisfy (5), with the control wu(x,t) given by (4), and

let the initial condition (given at time t e [0,T]) W(x,t) =

¢(x) satisfy the conditions on ¢(x) of Theorem 3.1.

- Suppose that S(x,y,t),P(v,t),ku(x,v,t) and b(v,t) are

Holder continuous in their arguments and S(x,y,t) and ku(x,v,t)

tend to zero as x —»d or y - d. Let P(x,t) >0 on D x [0,T]

and let S(x,y,t) be symmetric and non-negative definite on

DxD for each t in [O,T]. Then

T
ﬂgff dxdydsQu(x,y,s)w(x,s)w(y,s)
t

M

c*(p,t)

(15)

A f A 3 u, N L e VNen (7
P(t) + .ld-XdyR kx,y; L’)W("‘)W(J)'

where

T
p(t) = %f{ dxdydsRu(x,y,s)c(x,s)d(y,s),

u . . . :
R (x,y,s) is the function introduced in Theorem 4.1, corresponding to

Q(x,y,s) = Qu(x,y,s).

Proof. The assumptions on $(x,y,t),P(v,t), k' (x,v,t) and

b(v,t) guarantee that Qu(x,y,t) satisfies the conditions
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on Q(x,y,t) in Theorem 4.1. For fixed x,y, the function

u
R (x,y, 0)W(x, r)u(y,r) = F(x,y,r)

has the Ito differential (Theorem 3.2) in [0,T] (we use a version
of W(x,t) for which #£W(x,t) is continuous w.p.l. - see Theorem

3.2)

"

ar(x,y,r) Ri(x,y,r)w(x,r)w(y,r)dr + Ru(x,y,r)[dw(x,r)w(y,r)

+ W(x,r)aw(y,r) + di{x,r)aw(y,r)]
= Ri(x,y,r)w(x,r)w(y,r)dr
+ Ru(x,y,r)W(y,r)[iW(x,r)dr + o(x,r)dz +
+ b(x,r)(fW(v,r)k(v,x,r)dv)dr]
+ Ru(x,y,r)W(x,r)[iW(y,r)dr + o(y,r)dz +
+ By, r) (fi(v,r)k(v,y,r)dv)dr]

+ 2R(x,y,r)o(x,r)o(y,r)dr.

This, together with Ru(x,y,T) = 0 implies (w.p.l for each x,y,t)

that

T
- F(x,y,t) = { ar(x,y,r).

Furthermore,
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-E;F(x,y,t) =-E$Ru(x,y,t)w(x,t)w(y,t) . (16)
T
= E:;f [R‘;(x,y,r)w(x,r)w(y,r)
t

+ Ru(x,y,r)W(y,rXiw(x,r)dr + b(x,r)[W(v,r)k(v,x,r)dv)
o B, 3, W, TNy, 2)dr + by, ) fH(v, £)K(v, Y, 7)av) ]

T
+ 3 Ru(x,y,r)c(x,r)c(y,r)dr.
t

Each of the integrands on the right side of (16) can be defined
be defined to be a measurablc function of w,X,y,r and absolutely in-
tegrable over 0 x D x D x [t,T]. Thus (16), together with Fubini's

Theorem, implies that

-E,[axdy F(x,y,t) =-f K'(x,¥,t)p(x)p(y)axdy = (17)
T

E;ff dxdydr[R?(x,y,r)W(x,r)W(y,r)
t

+

Rp(x,y5r)w(y,r)ﬁm(x,r) + b(x,r) W(v,r)k(v,x,r)dv)

Ru(x,y,r)W(x,r)@WKy5r) + by, r)W(v,r)k(v,y,r)dv)]

+ p(t).

+

Now W(x,t) (w.p.l.) and R%(x,y,t) (for each fixed y e D)
are continuous and have uniformly continuous first and second

derivatives, with respect to the X, in the domain R. Also W(x,t)

(w.p.1.) and Ru(x,y,t) tend to zero as x -> M. Thus, upon partially

integrating and using Greens identity to eliminate the boundary in-
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integrals which are obtained (which are zero, owing to the first two

sentences of this paragraph), we get (for o not in some null set)

. T
f{ dxdydr Ru(x,y,r)w(y,r)£W(x,r)

T .
*
= f{ dxdydr ixRu(x,y,r)w(y,r)W(x,r).

Substituting this in (17), and using the symmetry of R(x,y,r), yields,

after another change in the order of integration

-J B (x,¥,)0 (x)o (v)axdy =
T * %. . u
= ngi dxdydr w(x,r)w(y,r)[az(x,y,r) + (€L )R (x,5,7)

+ b(x',r)k(x,x',r)Ru(x',y,r)dx' + (18)

f b(x‘,r)k(y,x‘,r)Ru(x,x',r)dx'] + p(t).

Finally, using the relation (10) in (18) yields (15). Q.E.D.

Write Cu(W(X,t),t) for the function Cu(¢,t) with W(x,t)
substituted for ¢(t). Write d'CU(W(x,t),t) for the Ito differ-
ential of the cost (corresponding to control u) but where, in the
expression for dW(x,t), a control v(x,t) replaces the control

u(x,t).

Theorem 4.3. Let u(x,t) be a given control (then ku(x,y,t) is

given) and assume the other conditions of Theorem 4.2, ILet u(x,t) be

the function v(x,t) which minimizes,
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T T
E; / dvcu(w(x,s),s) + E; [ [axdydsS(x,y,s)W(x,s)W(y,s)
t %

(19)
v T 2
+ B [ [dxdsP(x,s)Vv (x,s)
® 4
or, equivalently, which minimizes
By faxay B (x5, 8) (Y, 8)b(x,8)v (3,8) + W(x, 8)b (v, 8)¥(y, )]
| (20)
+ Q¥fde(X,s)v2(X,s).
Then
C'ﬁ(cp,t) < ¢%(o,t) (21)
E(x,s) is given by
~ Ru(x v,s) i
Ux,0) = (x9S BELEhy, s)ay (22)
and
ka(g,x,s) = -b(x,s)Ru(x,g,s)/P(x,s) (23)

~

and the corresponding Ru(x,y,t) satisfies the conditions on the

RY(X,¥,t) of Theorem L.2. Also
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~ :

f R (x5, 8)0 (x)p (y)dxdy s | R (x,7, )0 (x)p (v) dxdy (k)

for any bounded and measurable function o (x).

Proof. By Theorem 4.2, (19) is non-negative and equals zero
when v(x,t) = u(x,t). Then any minimizing v(x,t), (provided that
the corresponding integrals of (19) exist) must leave (19) non-
positive. This, together with the facts that C'(p,t) 4s the sum
of the last two integrals in (19) and that the first integral of (19)
equals -Cu(cp,t), implies (21). The v(x,t) minimizing (19) is the
v(x,t) which minimizes

T .
Eg { fdxdyds[R:(x,y,s)W(x, s)W(y,s)+ Ru(x,y, s)W(y,s) (W (x,s)+db (x,s)v(x,s))

+ Ru(x,y, s)W(x,8) (LW (y, s)+b(v,s)v(y,s))]

+ E(X{dexdydss(x,y,s)W(x,s)W(:y‘,s) + E:; {;dexdsP(x,s)vg(x,s)

or, equivalently, which minimizes (20). The wv(x,t) minimizing (20)
is given by (22). The statement below (23) is easily established
(via Theorenm L,2) since the ku(y,x,t) of (23) satisfies the con-
ditions on kv(y,x,t) in the Hypothesis of Theorem 4,2, (24) is
valid for all doubly differential fuhctions ®(x) which are zero

on D since
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cV(p,t) = [axayR’ (x,¥,t)o(x)o(y) + %f{ dxdydrR' (x,y,s)o(x,s)o(y,s)

T
faxdyR™(x, 7, t)0 (x)o(y) + %f{ axdydsR" (x,y,s)o(x,s)o(y,s)

A

for all such ¢(x). Hence (24) is valid for all functions which are

(almost everywhere) pointwise limits of a bounded sequence of such

o(x). Q.E.D.

Theorem 4.4 is the optimality theorem. Let kn,Qn and R"

u,oou u
correspond to k Q and R

, resp.

b

Theorem 4.k, Tet uo(x,t) be given and let the correspond-

ing ko(y,x,t) satisfy the conditions on ku(y,x,t). in Theorem

4.2, Suppose the other conditions of Theorem 4.2 hold. Define

un(x,t) from un_l(x,t); n=1,..., via the procedure of Theorem 4.3,

Then Rn(x,y,t) converges pointwise (almost everywhere) to an R(x,y,t)

which satisfies the conditiong of Theorem .1, The control u(x,t)

corresponding to R(x,y,t) via (25) (see (22))

u(x,s) = -bx,5)f ROLENMU.0)gy

()
[x(y, %, )W (y, 5)ay

n

is optimal in that Cu(@,t) < Cv(¢,t) for any other control
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T(x,8) =[5 (y,%, 8 )W(y, s)y (5a)

where k'(y,x,t) satisfies the condition on the X'(y,x,t) in

Theorem 4.2, R(x,y,t) also satisfies the boundary conditions on

the Ru(x,y,t) of Theorem 4,2, and the 'Ricatti' equation

R (5,%,) + (£, )R(x,7,t) (26)
+ [b(v,t)[k(x,V,t)R(v,y,t) + k(¥,V,t)R(x,V,t)]dv

= -Q(x,¥y,1t)

where k(y,x,t) 1is given by (25) k(x,v,t) = -b(v,t)R(v,x,t)/P(v,*t)

and also

Q(x,y,t) = S(x,y,t) + [k(x,v,t)k(y,v,t)P(v,s)dv. (27)

Proof. The proof is divided into three steps. First, we
show that Rn(x,y,t) converges (almost everywhere) to some function
R(x,y,t); second that R(x,y,t) is smooth and satisfies (26), and
third, that R(x,y,t) corresponds to the optimal control. By (24)

(where u and U are replaced by w, and un+l) and the non-negative

definiteness of the Ri(x,y,t),

Jaxay[R® (x, v, ) R (x,y,t) 10 (x)o (v) 2 0 (28)

for any bounded measurable ¢(x). Also the Rn(x,y,t) are continuous
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in DX Dx [0,T]. Hence, the diagonal values Rn(x,x,t) are non-

. . - : n
negative and non-increasing as n increases, and R (x,x,t) | R(x,x,t)

(almost everywhere) for some function R(x,x,t). This together with
§?§ |R%(x,v,t)| = mgx ]Rn(x,x,t)], implies that the R (x,y,t) are
uniformly bounded. In fact, the pointwise convergence implies that
the diagonal values converge 'almost uniformly! in the sense that
for any fixed € > 0 there is a function q(N,€) tending to zero
as N > o and a set SaC D with Lebesgue measure a(N,e) so that,

for any m,n > N
n m

0 = R (x,x,t) - R (x,%x,t) < ¢ (29)
on D - 8, Next, suppose that, for some m>n >N

11 " n 1" »

R (X',X Jt) - R (X')X )t) > 2€, (293')
on gome (x',x") e (ﬁ—Sa) X (5—Sa). Then, by continuity and symmetry,
there are neighborhoods A',A" of x',x", resp (A',A" are assumed to

be in ﬁ-Sa) 50 that (29a) and (29) hold on Af x A" U A" x Af, Let

I(A)x)be the characteristic function of the set A. Set ¢(x) =

I(A' U A")(x). Then using this and the diagonal (29) bound in (28)

gives

JIR™ (%,7,%) B (x,¥,8) JT(A UA™ ) (x) - T(A'UA") () dxdy

g (2e-he)p(ar)p(a") <0
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(u(-) is Lebesgue measure on D, a contradiction. Since ¢ can be
made arbitrarily small by increasing N, we conclude that Rn(x,y,t)
converges almost everywhere to a fuﬁction R(x,y,t). PFurthermore, it
is clear that R(x,y,t) is symmetric, measurable and bounded aimost
éverywhere by r(x,y,t), where r(x,y,t) 1is some function which tends

to zeroas x - or y - D.

To continue, we use the representation (see Theorems 4.1 and

k.3 for terminology)

n+l

+1
R (x,y,t) = (x,v,t) +
T nt+l n
+ { JdsavawK™ T (x,y;v,w;t,s)R (v,w,s) | (30)
T +1 n '
+ i Jdsdvawk" (v,x3w,v;t,8)R (v,w,s)
+1 . T * * n+l )
(x,¥,t) = { Jdsax'ay' G (x,x';t,8)G (v,5';t,8)Q°  (x',y',s) (31)
. 1
n+l(x' ',8) = S(x',y',s) + fkn+l(x',v,s)kn+ (y*,v,s)P(v,s)dv  (32)
kn+l(x',v,s) = -b(v,s)R%(v,x',s)/P(v,s) (33)

1 -b (v,s * n

K (x,y;v,w-t s) = P<V . (y,w )G (x,x1 58, 8)R (v, xt,s)axt.  (34)
The left side of (30) tends (almost everywhere)to R(x,y,t).
Similarly (and we omit the uninteresting details) the limit of each
sequence of integrals can be replaced by the integral of the (almost

everywhere) limit of the integrands.
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Thus, a.e.
- T
R(x,y,t) = R(x,y,t) + [ [dsdavawK(x,y;v,w;t,s)R(v,w,s)
t . .
(35)
T
+ [ JasavawK(y,x;w,v;t,s)R(v,w,s),
t

where the kernel K is given by (34) with R(v,x',s) replacing
Rn(v,x',s).

Consider the R(x,y,t) term in (35). Since Q(x,y,t) is
symmetric, bounded, measurable and tends to zero (almost everywhere)
as x> & or y — D, ﬁ(x,y,t) is Holder continuous and tends to
zero as x > or y - or t -—T., If a member of this latter

class is substituted for the Q(x,y,t), then ﬁ(x,y,t) e ¢°

2+
Similarly the map K (the sum of the integrals in (35)) takes

R(x,y,s) into a Holder continuous function which tends to zero as
X = aD, y -9D or t -»T. If a member of this class is substituted
for the R(x,y,s) in the kernel K, then the sum of the integrals in
(35) is in 8;+a. (Recall the identical assertion in the proof of

Theorem 4,1,) These considerations imply that R(x,y,t) is indeed

~o

in C2+a.

Upon differentiating (35) and using Gt(x,x';t,s) =
—i;G(X,X';t,S) we get (26).

Now, note that the wu(x,t) in (25) is the v(x,t) which
minimizes (19) and (20). Thus, letting Vv(x,t) be a control of the

form (25a), (19) yields
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+
o

T T
Eg f duCu(W(x,s),s) E_ [ [dsdxdyS(x,y,s)W(x,s)W(y,s)
t t :

S

+

u T 2
E@ J JasaxP(x,s)u” (x,s)
t

(36)

T — T
< E; f dVCu(W(x,s),s) + E; [ [dsaxdys(x,y, s)W(x,s)W(y,s)
t t

+ B

| <

T
{ fdsde(x,s)VQ(x,s).

Since the first terms on the left and right of (36) are equal, (36)

implies C"(9,t) s ¢'(p,t). Q.E.D.
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